
Regression with multiple dependent variables? - Cross Validated
Nov 14, 2010 · Is it possible to have a (multiple) regression equation with two or more dependent variables? Sure, you could run two separate regression equations, one for each DV, but that …
Why are regression problems called "regression" problems?
I was just wondering why regression problems are called "regression" problems. What is the story behind the name? One definition for regression: "Relapse to a less perfect or developed state."
regression - What does it mean to regress a variable against …
Dec 4, 2014 · Those words connote causality, but regression can work the other way round too (use Y to predict X). The independent/dependent variable language merely specifies how one …
Can I merge multiple linear regressions into one regression?
Oct 3, 2021 · Although one can compute a single regression for all data points, if you include model assumptions such as i.i.d. normal errors, the model for all points combined can't be …
Why not approach classification through regression?
86 "..approach classification problem through regression.." by "regression" I will assume you mean linear regression, and I will compare this approach to the "classification" approach of …
regression - Interpreting the residuals vs. fitted values plot for ...
Consider the following figure from Faraway's Linear Models with R (2005, p. 59). The first plot seems to indicate that the residuals and the fitted values are uncorrelated, as they should be in a
How to do 4-parametric regression for ELISA data in R
I am a biology student. We do many Enzyme Linked Immunosorbent Assay (ELISA) experiments and Bradford detection. A 4-parametric logistic regression (reference) is often used for …
Transforming variables for multiple regression in R
I am trying to perform a multiple regression in R. However, my dependent variable has the following plot: Here is a scatterplot matrix with all my variables (WAR is the dependent …
Interpretation of R's output for binomial regression
For a simple logistic regression model like this one, there is only one covariate (Area here) and the intercept (also sometimes called the 'constant'). If you had a multiple logistic regression, …
classification - Why is logistic regression a linear classifier ...
Logistic regression is neither linear nor is it a classifier. The idea of a "decision boundary" has little to do with logistic regression, which is instead a direct probability estimation method that …